Mplwp ballistic trajectories velocities.svg
Forfatter/Opretter: Geek3,
Licens: CC BY 3.0
Plot of a
ballistic trajectory with air resistance. The trajectory follows the differential equation

with initial conditions

.
The parameters are:
,
, 
- The initial velocity takes the values
,
,
,
, 
The differential equation is solved numerically using
Scipy odeint.