Romersk beton
Romersk beton (latin: opus caementicium) var et byggemateriale, der blev anvendt fra den sene Romerske republik til Romerrigets fald. Mange konstruktioner (fx romerske akvædukter og havne) med romersk beton har pga. materialets exceptionelle holdbarhed holdt til i dag - dvs ca. 2000 år.
Årsag til holdbarhed
Romersk beton var baseret på en hydraulisk hærdende cement. For nylig har man fundet, at det i forhold til materialesammensætningen på flere punkter adskiller sig fra nutidens beton, der er baseret på portlandcement.
Man har tidligere troet, at romersk beton er holdbart på grund af dets inkorporering af vulkansk aske.[1][2]
I år 2023 har forskere ved MIT offentliggjort en forskningsartikel, hvori de beskriver, hvad der formentlig er årsagen til den romerske betons overlegne holdbarhed; den er som følger: Klastisk brændt kalk i betonen, som gør, at den romerske beton er selvhelende. Herudover at den romerske beton hærder ved højere temperaturer, hvilken gør, at andre stoffer dannes. Bieffekt: Betonen hærder hurtigere.[1][2]
Ifølge MIT vil indlejret klastisk brændt kalk gøre, at disse inklusioner vil hærde senere de steder, hvor der dannes revner. MIT forskerne lavede forsøg, hvor de lavede revner og hældte vand på; efter ca. to uger var betonrevnerne forsvundet. En identisk beton uden brændt kalk, havde ikke denne effekt.[1][2]
Historisk
Materialet blev ved midten af det 1. århundrede AD hyppigt brugt, ofte til fugemasse mellem mursten, selvom variationer i tilslaget tillod forskellige materiale-arrangementer. Yderlige innovativ udvikling i materialet, kaldet den romerske arkitektoniske revolution, muliggjorde strukturelt komplicerede former som Pantheon, der verdens største og ældste ikke-armerede betonkuppel.[3][1]
Romersk beton blev normalt skalmuret med natursten eller mursten, og interiører kan være yderligere dekoret med stuk, fresko malerier, eller forskelligfarvede tynde plader bestående af "marmoreret beton". Selvom det bestod af tilslag og cement ligesom nutidens beton, var tilslagets sammensætning anderledes. Tilslagets stykker var som regel meget større end nutidens beton, og det bestod ofte af murbrokker, med det resultat at det blev lagt frem for hældt.[4] Nogle romerske betonblandinger kunne hærde under vand, hvilket var nyttigt til brobyggeri og andre byggerier ud til vand.
Det er uvished om, hvornår romersk beton blev udviklet, men det var tydeligvis i udbredt brug og i almindelig anvendelse fra omkring 150 fvt. Nogle forskere tror, at det blev udviklet et århundrede forinden.[5]
Anvendelse i dag
I dag er forskere begyndt at få øjnene op for denne type beton på grund af dens styrke og holdbarhed og den minimale miljøpåvirkning, der er forbundet med produktionen sammenlignet med konventionel portlandcement. I et interview med The Guardian i 2017 nævnte forskeren og geologen Marie Jackson, at romersk beton skulle bruges til byggeriet af Swansea Lagoon, fordi romersk beton, når den reagerer med saltvand, forstærkes yderligere.[6]
Referencer
- ^ a b c d e Massachusetts Institute of Technology. (2023, January 6). Riddle solved: Why was Roman concrete so durable?. ScienceDaily Citat: "...Many of these structures were built with concrete: Rome's famed Pantheon, which has the world's largest unreinforced concrete dome and was dedicated in A.D. 128, is still intact, and some ancient Roman aqueducts still deliver water to Rome today. Meanwhile, many modern concrete structures have crumbled after a few decades....Under closer examination, these ancient samples also contain small, distinctive, millimeter-scale bright white mineral features, which have been long recognized as a ubiquitous component of Roman concretes. These white chunks, often referred to as "lime clasts," originate from lime, another key component of the ancient concrete mix...Previously disregarded as merely evidence of sloppy mixing practices, or poor-quality raw materials, the new study suggests that these tiny lime clasts gave the concrete a previously unrecognized self-healing capability...."The benefits of hot mixing are twofold," Masic says. "First, when the overall concrete is heated to high temperatures, it allows chemistries that are not possible if you only used slaked lime, producing high-temperature-associated compounds that would not otherwise form. Second, this increased temperature significantly reduces curing and setting times since all the reactions are accelerated, allowing for much faster construction."... As soon as tiny cracks start to form within the concrete, they can preferentially travel through the high-surface-area lime clasts. This material can then react with water, creating a calcium-saturated solution, which can recrystallize as calcium carbonate and quickly fill the crack, or react with pozzolanic materials to further strengthen the composite material. These reactions take place spontaneously and therefore automatically heal the cracks before they spread. Previous support for this hypothesis was found through the examination of other Roman concrete samples that exhibited calcite-filled cracks...To prove that this was indeed the mechanism responsible for the durability of the Roman concrete, the team produced samples of hot-mixed concrete that incorporated both ancient and modern formulations, deliberately cracked them, and then ran water through the cracks. Sure enough: Within two weeks the cracks had completely healed and the water could no longer flow. An identical chunk of concrete made without quicklime never healed, and the water just kept flowing through the sample. As a result of these successful tests, the team is working to commercialize this modified cement material. "It's exciting to think about how these more durable concrete formulations could expand not only the service life of these materials, but also how it could improve the durability of 3D-printed concrete formulations," says Masic. ...", backup
- ^ a b c Linda M. Seymour, Janille Maragh, Paolo Sabatini, Michel Di Tommaso, James C. Weaver, and Admir Masic. Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances, 2023 DOI: 10.1126/sciadv.add1602
- ^ Moore, David (februar 1993). "The Riddle of Ancient Roman Concrete". S Dept. of the Interior, Bureau of Reclamation, Upper Colorado Region. www.romanconcrete.com. Hentet 20. maj 2013.
- ^ Henig, Martin (ed), A Handbook of Roman Art, p. 30, Phaidon, 1983, ISBN 0714822140
- ^ Boëthius, Axel, Ling, Roger, Rasmussen, Tom, Etruscan and Early Roman Architecture, pp. 128-129, Yale/Pelican history of art, 1978, Yale University Press, ISBN 0300052901, 9780300052909, Google Books
- ^ Davis, Nicola, Why Roman concrete still stands strong while modern concrete decay, 2017, The Guardian, [1]
Eksterne henvisninger
- DOE/Lawrence Berkeley National Laboratory (2013, June 4). Roman seawater concrete holds the secret to cutting carbon emissions. ScienceDaily Citat: "...In concrete made with Portland cement this is a compound of calcium, silicates, and hydrates (C-S-H). Roman concrete produces a significantly different compound, with added aluminum and less silicon. The resulting calcium-aluminum-silicate-hydrate (C-A-S-H) is an exceptionally stable binder..."
Spire Denne naturvidenskabsartikel er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den. |
Medier brugt på denne side
Forfatter/Opretter:
- Urutseg: Blank_template.svg
- AllyUnion, Stannered: Science-symbol-2.svg
- Ain92: combination
Science stub icon.
Forfatter/Opretter: James Cocks www.jamescocks.com, Licens: CC BY-SA 3.0
Caesarea Roman Concrete bath ruins
(c) I, Jean-Christophe BENOIST, CC BY 2.5
Interior of the pantheon in Rome