Normeret vektorrum

Broom icon.svgDer er ingen kildehenvisninger i denne artikel, hvilket er et problem.
Du kan hjælpe ved at angive kilder til de påstande, der fremføres. Hvis ikke der tilføjes kilder, vil artiklen muligvis blive slettet.
Question book-4.svg

Et normeret vektorrum er i matematikken et reelt eller komplekst vektorrum udstyret med en norm. Det er altså et par (V, || ⋅ ||) bestående af et reelt hhv. komplekst vektorrum V, og en normfunktion || ⋅ ||:VR+, der opfylder

  1. ||av|| = |a| ||v|| for alle vV og aR hhv. aC,
  2. ||v|| = 0 ⇔ v = 0 for alle vV,
  3. ||v + w|| ≤ ||v|| + ||w|| for alle v, wV (trekantsuligheden).

Ethvert normeret vektorrum (V, || ⋅ ||) bliver til et metrisk rum (V, d) med metrikken

d(x, y) = ||xy||.

Et normeret vektorrum kaldes et Banachrum, hvis det er fuldstændigt med hensyn til denne metrik.

MatematikSpire
Denne artikel om matematik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den.

Medier brugt på denne side