Lorentz-transformation
- Der er for få eller ingen kildehenvisninger i denne artikel, hvilket er et problem. Du kan hjælpe ved at angive troværdige kilder til de påstande, som fremføres i artiklen.
Lorentz-transformationen er navngivet efter sin opdager, den hollandske fysiker og matematiker Hendrik Antoon Lorentz (1853-1928), og danner grundlaget for den specielle relativitetsteori, som blev introduceret af Albert Einstein. Teorien ophæver modsætningerne mellem teorien for elektromagnetisme og klassisk mekanik.
Ved denne transformation er lyshastigheden den samme i alle inertialsystemer, som postuleret af den specielle relativitetsteori. Selv om ligningerne er knyttet til den specielle relativitetsteori, blev de udviklet før denne. Hendrik Lorentz fremsatte dem i 1904 for at forklare Michelson–Morley eksperimentet ved længdeforkortelse. Dette står i kontrast til den mere intuitive Galilei-transformation, som er tilstrækkelig ved ikkerelativistiske hastigheder (dvs. hastigheder langt mindre end lysets hastighed).
Den kan (for eksempel) bruges til at beregne hvordan en partikels bevægelse ser ud fra et inertialsystem der bevæger sig med konstant hastighed (i forhold til det oprindelige koordinatsystem), og erstatter derved den tidligere Galilei-transformation. Lysets hastighed, c, indgår som en parameter i Lorentz-transformationen. I grænsetilfældet hvor v er forsvindende lille i forhold til c, dvs. hvor , genfindes den galileiske transformation.
Lorentz-transformationen er en gruppetransformation som anvendes til at transformere tid- og rum-koordinater (eller mere generelt en hvilken som helst fire-vektor) fra ét inertialsystem, , til et andet, , hvor bevæger sig med hastigheden i forhold til langs x-aksen. Hvis en begivenhed har rumtidskoordinaterne i , og i , er sammenhængen mellem disse ifølge Lorentz-transformationen:
hvor
kaldes Lorentzfaktoren og er lysets hastighed i vakuum.
De ovenstående fire ligninger kan udtrykkes samlet i matrixform som
eller alternativt som
Den første matrixformulering har den fordel at den nemt ses at reducere til Galilei-transformationen i grænsen . Den anden matrixformulering tydeliggør bevarelsen af rum-tids-intervallet , som er en fundamental invariant i den specielle relativitetsteori.
Disse ligninger gælder kun hvis er rettet langs x-aksen af . I de tilfælde hvor ikke er rettet langs x-aksen af , er det generelt lettere at rotere koordinatsystemet således at er orienteret langs x-aksen af end at brydes med den generelle formulering af Lorentz-transformationen.
Historie
Lorentz opdagede i 1900 at transformationen bevarede Maxwells ligninger. Lorentz troede på æterhypotesen; det var Albert Einstein der udviklede relativitetsteorien for at give et grundlag for dens anvendelse.
Lorentz-transformationen publiceredes først i 1904, men formalismen var ikke perfekt på dette tidspunkt. Den franske matematiker Henri Poincaré reviderede Lorentz' formalisme og gjorde de fire ligninger til den kohærente, selvkonsistente helhed vi kender i dag.
Bog
- Elvekjær, Finn & Nielsen, Børge Degn (1997): Fysikkens verden (bind 3): Mekanik, elektricitet og magnetisme, kerne- og partikelfysik. København, Gads Forlag. ISBN 87-12-03019-8
|
Medier brugt på denne side
Forfatter/Opretter: Animation by Jonathan Doolin, Licens: CC BY-SA 2.5
The Lorentz Transformation is capable of intelligible expression in only one or a limited number of ways, but if this particular animation is copied, I'd just as soon be credited, so tag with CC-by-sa 2.5.
The line of dots that cross the horizontal axis represent events that appear simultaneous in one of the reference frames. The lines parallel to these (green if you look closely) are lines of constant time, (lines of simultaneity) in that original frame.
The line of dots that cross the vertical axis are events which occur in the same place at different times in the same reference frame. The lines parallel to these (a little bluish, if you look closely) are lines of constant position, representing the positions of stationary objects in the original frame. These lines are also known as worldlines.
The animation shows when and where those events would occur from the reference of other frames.
The hyperbolic arcs merely show the arcs of where different observers at the origin would observe the events denoted by the large dots.
The diagonals represent the speed of light which never changes.