Radioudbredelse
Radioudbredelse, udbredelse af radiobølger eller radiofrekvensernes udbredelse beskriver hvordan radiobølger opfører sig, når de udsendes eller forplanter sig.
Fænomener som påvirker radioudbredelsen:
- Refleksion – F.eks. i form af forskellige lag D, E, F1, F2 i ionosfæren i atmosfæren.
- Refraktion – F.eks. ved temperaturinversion i troposfæren i atmosfæren.
- Absorption – F.eks. Absorberes wifi ved 2,4 GHz af alt vandholdigt materiale som f.eks. blade.
- Diffraktion – "spredning".
Ionosfæren påvirkes af solvinden, som igen er påvirket af primært solens eventuelle solpletter og soludbrud.
Ionosfærereflektioner påvirker især frekvenser mellem ca. 100 kHz – 30 MHz – og undtagelsesvis op til 100 MHz.
Inversioner i troposfæren påvirker især frekvenser mellem ca. 50 MHz – 800 MHz (?).
Når meteorer nedbremses og opvarmes i jordens atmosfære, ioniseres den, og dette vil forbigående påvirke radioudbredelsen.
Se også
- Long delayed echo
Kilder/referencer
- ^ Tropospheric Ducting Citat: "...Durring a duct it is possible to hear stations on your scanner in the VHF and UHF band from about 50 to 900 mhz that includes picking up stations hundreds of miles away from your local police to fm radio to tv..."
Eksterne henvisninger
- Types of Propagation Arkiveret 24. oktober 2007 hos Wayback Machine
- Elektronik Design: Radiobølger, solfakkel og røntgenstyrke Arkiveret 30. november 2004 hos Wayback Machine
- Kilde: Current Solar Data (from NOAA) Add an X-ray flare and Geomagnetic storm monitor to your website!
Meteor
- FM Radio Detection of Meteors Arkiveret 24. november 2004 hos Wayback Machine
- Turn your TV set into a Meteor Detector Arkiveret 7. april 2005 hos Wayback Machine
|
Medier brugt på denne side
Ray diagram showing the effect of using different frequencies at the same transmission angle. The blue ray frequency is greater than the MUF and passes into space. The green ray frequency is less than the MUF but greater than the E layer MUF. This is usually the best frequency region to use for long range communications and is usually where the FOT (equal to 0.85 x MUF) exists. The orange ray frequency is less than the E layer MUF and greater than the LUF. This is best for medium range (around 500 to 1500 km) transmissions. The red ray is less than the LUF and is absorbed in the D layer.
Forfatter/Opretter: Sebastian Janke, Licens: CC BY-SA 2.5
Visualization of a radio transmitter's dead zone.
En bild som är tänkt att länkas till från "Repeater"-sidan. Den skall beskriva hur en repeater länkar ihop två sändare, som en slags brygga emellan.
Forfatter/Opretter: unknown, Licens: CC BY-SA 3.0
Ice fog over Fairbanks, Alaska in winter 2005. Temperature approximately minus 30F. Joseph N. Hall Note the mirage at the base of the Alaska Range
Forfatter/Opretter: Craig Clements, Licens: GFDL
Superior mirage of the boats at entrance of the harbor at Victoria, British Columbia,Canada
Diagram showing rays of the same frequency at several different transmission (and incident) angles. The frequency is greater than the critical frequency, therefore the two most vertical rays pass into space. The next two rays are refracted in the F layer, indicating that the signal frequency is less than the MUF for these angles but greater than the E layer MUF. For the last ray (lowest transmission angle) the E layer MUF is greater than the transmission frequency and the ray is unable to reach the F layer.
(c) Averse, CC BY-SA 3.0
The Fresnel zone is one of a (theoretically infinite) number of a concentric ellipsoids of revolution which define volumes in the radiation pattern of a (usually) circular aperture.