Fotovoltaik

Solpaneler i Marla, Spanien
World Photovoltaics Installed Capacity.svg
Fotovoltaisk 'træ' i Steiermark, Østrig

Fotovoltaik er omdannelsen af lys til elektrisk energi. Det sker ved den fotovoltaiske effekt via halvledere. Typiske materialer, der bruges til fotovoltaik, er monokrystallinsk silicium, polykrystallinsk silicium, amorf silicium, cadmiumtellurid og kobber indium selenid. Denne teknik benyttes gennem solceller også kaldet fotovoltaiske celler.

På grund af stor efterspørgsel efter vedvarende energi har forskningen og etableringen af solcelleanlæg gennem de senere år været i stor vækst.[1][2][3]

Fotovoltaisk produktion er øget med i gennemsnit 48% hvert år siden 2002, hvilket gør det til den hurtigst voksende energiteknologi i verden.[4]

Fotovoltaiske effekt

Uddybende Uddybende artikel: Fotovoltaisk effekt

Den fotovoltaiske effekt er skabelsen af elektrisk spænding i et materiale der udsættes for fotoner (elektromagnetisk stråling; fx lys). Den fotovoltaiske effekts frigivne elektroner flyttes mellem forskellige bindinger (for eksempel fra valens til konduktions-bindinger) indenfor det samme materiale, dermed opbygges en spænding mellem to elektroder.[5]

Solcelle

Uddybende Uddybende artikel: Solcelle

I de fleste fotovoltaiske enheder er bestrålingskilden sollys og derfor kendes disse som solceller. I tilfældet med en pn-overgang solcelle, der skaber belysning af materialet en elektrisk jævnspænding.[6]

Anti-solcelle

Nuvola apps download manager2-70%.svg Hovedartikel: Termoelektrisk effekt.

Det er et faktum, at en pn-overgang med det rette båndgab, kan anvendes til at lave elektrisk energi af en temperaturforskel.[7]

Der er i flere artikler blevet fremsat den hypotese, at man kan lave fotovoltaik celler, som kan virke om natten - og om dagen hvis beskyttet mod sollys. Sådanne fotovoltaik celler kaldes en anti-solcelle (engelsk anti-solar cell), termisk udstrålings fotovoltaik celle (engelsk thermoradiative cell).[8][9] Både om natten og dagen skal himlen være mere (helst) eller mindre skyfri, så termisk infrarød stråling i bølgelængdeintervallet 8-13 um frit kan stråle gennem atmosfæren og ud i det lufttomme verdensrum. Ideelt vil en anti-solcelle kunne levere 54 W/m^2 og under typiske himmelforhold 10 W/m^2.[10][7] Da anti-solcellen køles ned på den himmelvendte side, skal der løbende tilføres varme på siden, der vender ned mod jorden, fx fra vinden, søvand, havvand, jorden - eller på anden vis.

Der er fundet flere materialer, som kan udstråle infrarød stråling i bølgelængdeintervallet 8-13 um. Sådanne materialer kan også anvendes til at køle objekter både dag og nat - fx huse og huses tage, mure mellem 5°C-12°C (resultat 2014-2021) i forhold til omgivelsestemperaturen, når der er klar himmel.[11][12] [13]

I maj 2022 blev der offentliggjort en artikel i ACS Photonics som viser, at man kan lave anti-solceller som virker om natten. De måler effekten som tre almindellige industrielt producerede MIR-fotodioder afgiver ved en temperaturforskel på 12,5°C. Her kan den bedste MIR-fotodiode lave 2,26mW/m^2, og den udsender fotoner med en centertop på 4,7um.[14]

Se også

Referencer

  1. ^ "Tyska FV-marknaden". Arkiveret fra originalen 2. januar 2010. Hentet 23. april 2011.
  2. ^ "BP Solar to Expand Its Solar Cell Plants in Spain and India". Arkiveret fra originalen 26. september 2007. Hentet 23. april 2011.
  3. ^ "Large-Scale, Cheap Solar Electricity". Arkiveret fra originalen 9. juni 2020. Hentet 23. april 2011.
  4. ^ Earth Policy Institute (2007). Solar Cell Production Jumps 50 Percent in 2007 Arkiveret 29. maj 2008 hos Wayback Machine
  5. ^ The Photovoltaic Effect – Introduction Arkiveret 21. juli 2011 hos Wayback Machine. Photovoltaics.sandia.gov (2001-02-01). Retrieved on 2010-12-12.
  6. ^ The photovoltaic effect Arkiveret 22. juli 2011 hos Wayback Machine. Scienzagiovane.unibo.it (2006-12-01). Retrieved on 2010-12-12.
  7. ^ a b Open Access: 13 October 2016, nature.com: Entropic and Near-Field Improvements of Thermoradiative Cells Citat: "...Semiconductor p-n junctions, on the other hand, have been used to harvest photons from high temperature heat sources to generate electricity, such as photovoltaic (PV) and thermophotovoltaic devices9,10,11,12,13,14,15. In these devices, photons from external heat source enter the devices to generate electron-hole pairs and carry in entropy. Entropy of the incoming photons and entropy generated in the energy conversion process will be carried away by photons emitted during radiative recombination and via heat rejected to the environment...The idea of using photons to reject heat of a heat engine is recently explored by Byrnes et al.18. aiming at using outer space as the heat sink, and a thermoradiative cell can be a candidate for this approach...", backup
  8. ^ January 30, 2020, scitechdaily.com: Anti-Solar Cells: Thermoradiative Photovoltaic Cells Work at Night Arkiveret 5. februar 2020 hos Wayback Machine Citat: "...What if solar cells worked at night? That’s no joke, according to Jeremy Munday, professor in the Department of Electrical and Computer Engineering at UC Davis. In fact, a specially designed photovoltaic cell could generate up to 50 watts of power per square meter under ideal conditions at night, about a quarter of what a conventional solar panel can generate in daytime, according to a concept paper by Munday and graduate student Tristan Deppe. The article was published in, and featured on the cover of, the January 2020 issue of ACS Photonics...The device would work during the day as well, if you took steps to either block direct sunlight or pointed it away from the sun. Because this new type of solar cell could potentially operate around the clock, it is an intriguing option to balance the power grid over the day-night cycle..."
  9. ^ Feb 3, 2020, popularmechanics.com: How Reverse Solar Panels Could Generate Power at Night. It's called "optically coupling with deep space." Citat: "...In a thermal radiation cell, we reset the parameters so Earth is the new sun, and its even minimal accumulated heat dwarfs the cold, midnight black of outer space...", backup
  10. ^ Paywalled: ACS Photonics: Nighttime Photovoltaic Cells: Electrical Power Generation by Optically Coupling with Deep Space. Tristan Deppe Jeremy N. Munday* ACS Photonics 2020, 7, 1, 1-9 Arkiveret 4. februar 2020 hos Wayback Machine Citat: "...Explained in detail in the next section of this Perspective, a TR [Thermoradiative Cells] cell generates power because the emission of thermal radiation from the cell exceeds the absorption of irradiation from the surroundings during operation. The actual devices, a solar cell and a TR cell, are nearly identical; however, the operating currents and voltages have opposite signs because the radiative processes are reciprocal (Figure 1c)...The nighttime PV cell concept relies on the thermoradiative effect and uses the warmth of the earth, at about 300 K, as a heat source and the darkness of space, at 3 K, as a heat sink...an ideal cell could produce as much as 54 W/m2 under ideal conditions and potentially more than 10 W/m2 under typical sky conditions..."
  11. ^ Stanford School of Engineering. (2014, November 26). High-tech mirror beams heat away from buildings into space. ScienceDaily Arkiveret 20. december 2014 hos Wayback Machine Citat: "..."As a result of professor Fan's work, we can now [use radiative cooling], not only at night but counter-intuitively in the daytime as well."...The first part of the coating's one-two punch radiates heat-bearing infrared light directly into space...This multilayered coating also acts as a highly efficient mirror, preventing 97 percent of sunlight from striking the building and heating it up...Together, the radiation and reflection make the photonic radiative cooler nearly 9 degrees Fahrenheit [5 °C] cooler than the surrounding air during the day...Its internal structure is tuned to radiate infrared rays at a frequency that lets them pass into space without warming the air near the building..."
  12. ^ May. 23, 2019, sciencemag.org: This engineered wood radiates heat into space, potentially slashing cooling costs Arkiveret 17. juli 2019 hos Wayback Machine Citat: "..."...If used on a building’s exterior, such as in siding and roofs, the material could drop a building’s temperature as much as 10°C and reduce cooling costs as much as 60%...But in the past 2 years, researchers have devised plastic films and paints that absorb heat and re-emit that energy at longer mid-IR wavelengths, which air doesn’t absorb. If emitted toward the sky, these photons pass unimpeded and dump their energy into deep space. But to use these materials in buildings, engineers need to laminate rooftop or siding materials with the plastics or apply the heat-emitting paints...The researchers hit upon a simple chemical procedure. They soaked basswood in a solution of hydrogen peroxide, which chops normally long lignin molecules into small fragments...it turns white, reflecting virtually all incoming light. The new composite also absorbs heat from its surroundings and reradiates it as mid-IR light. That allows the material to cool surfaces to which it is attached by up to 10°C..."
  13. ^ March 6, 2021, scitechdaily.com: Radiative Cooling and Solar Heating From One System – No Electricity Needed. Study describes passive cooling system that aims to help impoverished communities, reduce cooling and heating costs, lower CO2 emissions Citat: "...A study published on February 8, 2021, in the journal Cell Reports Physical Science describes a uniquely designed radiative cooling system that: [] Lowered the temperature inside a test system in an outdoor environment under direct sunlight by more than 12 degrees Celsius (22 degrees Fahrenheit). [] Lowered the temperature of the test box in a laboratory, meant to simulate the night, by more than 14 degrees Celsius (25 degrees Fahrenheit). [] Simultaneously captured enough solar power that can be used to heat water to about 60 degrees Celsius (140 degrees Fahrenheit)...The system consists of what are essentially two mirrors, made of 10 extremely thin layers of silver and silicon dioxide, which are placed in a V-shape...", kilde
  14. ^ Photonics 2022, 9, 5, 1535–1540, Publication Date: May 9, 2022, Thermoradiative Power Conversion from HgCdTe Photodiodes and Their Current–Voltage Characteristics Citat: "...At a temperature differential of only 12.5 °C, we measure a peak thermoradiative electrical power density of 2.26 mW/m^2 for a photodiode emitting near 4.7 μm, with an estimated radiative efficiency of 1.8%. Our results highlight the need for achieving high radiative efficiencies with mid-infrared semiconductors to deliver on the promise of thermoradiative power generation..."
ElektronikSpire
Denne artikel om elektronik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den.

Medier brugt på denne side

Nuvola apps ksim.png
Forfatter/Opretter: David Vignoni / ICON KING, Licens: LGPL
KDE ৩.x-এর জন্য Nuvola icon theme for KDE 3.x.
World Photovoltaics Installed Capacity.svg
Forfatter/Opretter: Delphi234, Licens: CC0
World photovoltaics installed capacity from 1996 to 2016.
Gleisdorf.Solarbaum.jpg
Forfatter/Opretter: Anna Regelsberger, Licens: CC BY-SA 3.0
The "solar tree", a symbol of en:Gleisdorf