Nærfelt og fjernfelt
Nærfelt og fjernfelt eller nærfeltet og fjernfeltet er områder omkring en radioantenne - og bølgelængdemæssigt små elektriske komponenter - fx elektriske spoler (fx rammeantenne) og elektriske kondensatorer. Nærfeltet kaldes også induktionsfeltet.[1]
En radioantenne har to felter (og bølgelængdemæssigt små elektriske komponenter næsten kun induktionsfeltet):
- Induktionsfelt - findes næsten kun i nærfeltet. Udgøres af et vekslende elektrisk felt - og/eller et vekslende magnetisk felt.
- Radiobølgeudstråling - findes både i nærfeltet og fjernfeltet - elektromagnetisk stråling.
Det ikke-strålende 'nærfelt' dominerer tæt på radioantennen (bølgelængdemæssigt; < bølgelængde / (2 x pi) ca.= bølgelængde x 0,159), mens elektromagnetisk stråling 'fjernfelt' opførsel dominerer ved større afstande fra radioantennen.[1]
Ophavet til nærfeltet og fjernfeltet er accelereret og decelereret elektrisk ladning.[2]
Fjernfeltet som funktion af afstanden
Fjernfeltets E (elektrisk) og B (magnetisk) felters styrke falder omvendt proportionalt med afstanden r fra kilden, resulterende i at den elektromagnetiske strålings effekts intensitet falder med 1/r^2.[3]
Nærfeltet som funktion af afstanden
Det hurtige fald i nærfeltets effekts intensitet, er årsagen til at effekter grundet nærfeltet, stort set er forsvundet nogle få bølgelængder fra radioantennen.
Elektrisk dipol
En elektrisk dipols nærfelts E og B styrker falder meget hurtigere med afstanden r: Resulterende i at nærfeltets effekts intensitet falder med henholdsvis 1/r^6 og 1/r^4.
Magnetisk dipol
En magnetisk dipols nærfelts E og B styrker falder meget hurtigere med afstanden r: Resulterende i at nærfeltets effekts intensitet falder med henholdsvis 1/r^4[4] og 1/r^6.
Eksempler på fjernfeltsteknologi
Eksempler på transducere, der sidder i teknologi, udstyr og dyr, som benytter fjernfelter (elektromagnetisk stråling):
- Til at udsende og/eller modtage radiobølger
- Til at modtage elektromagnetisk stråling
- Øjne - til fx synligt lys; nogle øjne kan også se noget infrarødt lys (nogle fisk (fx guldfisk, laks, piratfisk), nogle insekter) og noget UV-stråling (nogle flagermus, bier, fisk og fugle).[5][6][7]
- Fotocelle - til fx noget infrarødt lys, synligt lys og UV-stråling
- Kamera - til fx noget infrarødt lys, synligt lys og UV-stråling
- Billedsensor - til fx noget infrarødt lys, synligt lys og UV-stråling
- Fotodiode - til fx noget infrarødt lys og synligt lys
- Solcelle - til fx noget infrarødt lys og synligt lys
- Geiger-Müller-rør - til fx gammastråling
- Til at udsende elektromagnetisk stråling
- Glødelampe - til fx synligt lys
- Lysdiode - til fx noget infrarødt lys, synligt lys, noget UV-stråling
- Gasudladningsrør - til fx noget infrarødt lys, synligt lys, noget UV-stråling
- Lysstofrør - til synligt lys
- Plasmaskærm - til synligt lys
- Billedrør - til synligt lys
- Lysdiode-bagbelyst LCD-skærm - til synligt lys
- Røntgenrør - til røntgenstråling
Eksempler på nærfeltsteknologi
Eksempler på transducere, der sidder i teknologi og udstyr, som benytter vekslende eller varierende nærfelter - eller afskærmer for disse:
- Benytter elektromagnetisk induktion
- Transformator
- To eller flere koblede elektriske svingningskredse
- Dykmeter
- Nærfeltskommunikation - fx trådløse betalingskort og baliser.
- Æterofon; theremin - instrumentet spilles, ved at musikerens hænder forandrer position i forhold til to faste elektroder koblet til elektriske svingningskredse
- Metaldetektor
- Elektrodynamisk motor
- Elektrodynamisk generator
- Dynamisk mikrofon
- Elektrodynamisk højtaler
- Benytter elektrostatisk induktion
- Dyr med elektroception - er følsom overfor (pulserende) elektrostatiske felter
- Hajer
- Næbdyr
- Dyr med elektroception og som kan lave elektrisk lammende stød
- Elektriske ål
- Elektriske maller
- Elektrisk rokke
- Elektrostatisk generator
- Elektrostatisk motor
- Elektrohydrodynamisk-lifter
- Elektrostatisk ion-motor
- Elektrostatisk højtaler
- Visse berøringsknapper
- Visse berøringsfølsomme skærme
- Visse trådløse fugtsensorer
- Afskærmning mod elektromagnetisk induktion og elektrostatisk induktion
- En toledet elektrisk transmissionslinje er typisk udformet så nærfeltet dæmpes endnu mere end om elektriske ledninger. Balancerede transmissionslinjer er fx typisk snoede - og ubalancerede transmissionslinjers ene leder omslutter helt den anden leder (koaksialkabel).
- Faradaybur
Kilder/referencer
- ^ a b OZ NR. 4 . APRIL 1963. 35. ÅRGANG, edr.dk: Antenner - på en anden måde. Af OZ7AQ Arkiveret 14. oktober 2018 hos Wayback Machine: Citat: "...Vor sendeantenne er nemlig omgivet af to forskellige elektromagnetiske felter, nærfeltet og fjernfeltet. Fjernfeltet skyldes den fra antennen udstrålede energi, der — når den een gang har forladt antennen — fortsætter upåvirket af, hvad vi derefter foretager os, og aldrig vender tilbage. Nærfeltet benævnes også induktionsfeltet, og er den virkning af strømmen, vi er fortrolig med i elektromagneter, transformere og svingningskredse. Det er nærfeltet, vi kan påvise med en glimlampe eller en lille gløde lampe tilsluttet en ring af kobbertråd. Sådan en indikator vil vise, at feltet aftager meget hurtigt, når vi fjerner den fra antennen, lige som det er tilfældet, når vi fjerner den fra PA-spolen i senderen..."
- ^ arrl.org: Why an Antenna Radiates Citat: "...And an accelerating or decelerating charged body, be it an electron or a pithball, is a source of electromagnetic radiation...The radiation field of an antenna transmits only real power, which travels out toward distant localities without ever reversing direction. [] The induction field carries only reactive power, [] and the coulomb field carries both real and reactive power..."
- ^ Jun 08, 2012, electronicdesign.com: What’s The Difference Between EM Near Field And Far Field? Citat: "...The far field is the real radio wave. It propagates through space at a speed of just about 300 million meters per second, which is the speed of light or nearly 186,400 miles per second. The E and H fields support and regenerate one another as their strength decreases inversely as the square of the distance (1/r^2). Maxwell described this phenomenon in his infamous equations..."
- ^ rfwireless-world.com: Near Field vs Far Field Antenna Radiation Pattern Citat: "...The region above the distance of 2 D^2/λ is referred as far field region. This region is also called as Fraunhofer region. In these region power radiated from antenna decays inverse of square of distance(1/R^2). Near field of the antenna will have more energy compare to the far field. This is because of proximity of EM wave to the antenna radiator part. Power in near field region follow 1/R^4 and hence power intensity falls off very rapidly..."
- ^ April 11, 2018, sciencing.com: Animals That Can See Infrared Light, backup
- ^ 25 January 2019, sciencealert.com: Birds Can See a 'Colour' Humans Can't. Now Scientists Have Revealed This Hidden World, backup Citat: "..."What appears to be a green mess to humans are clearly distinguishable leaves for birds. No one knew about this until this study," said biologist Dan-Eric Nilsson, also from Lund University..."
- ^ July 27, 2011, news.ncsu.edu: What Do Bees See? And How Do We Know?, backup Citat: "...Humans see light in wavelengths from approximately 390 to 750 nanometers (nm). These wavelengths represent the spectrum of colors we can see. Bees, like many insects, see from approximately 300 to 650 nm. That means they can’t see the color red, but they can see in the ultraviolet spectrum (which humans cannot). Bees can also easily distinguish between dark and light – making them very good at seeing edges..."
Wikimedia Commons har medier relateret til: |
Medier brugt på denne side
Forfatter/Opretter: No machine-readable author provided. Mferrand assumed (based on copyright claims)., Licens: CC BY 2.5
Antenna 3D patern Miguel Ferrando
http://www.upv.es/antenasVector version of Field regions for typical antennas gif
Feldwellenwiderstand als Funktion des Abstandes bei einem elektrischen und magnetischen Dipol. Darstellung des Impedanzverlaufes im Nah- und Fernfeld.