Computersimulation
Computersimulation eller computersimulering er kørsel af en matematisk model på en computer, hvor modellen er designet til at repræsentere adfærden af eller resultatet af et virkeligt eller fysisk system.[1]
Pålideligheden af nogle matematiske modeller kan bestemmes ved at sammenligne deres resultater med de virkelige resultater, de sigter efter at forudsige. Computer-simuleringer er blevet et nyttigt værktøj til matematisk modellering af mange naturlige systemer inden for fysik (beregningsfysik), astrofysik, klimatologi, kemi, biologi og fabrikation, såvel som menneskelige systemer inden for økonomi, psykologi, samfundsvidenskab, sundhedspleje og teknik. Simulering af et system er repræsenteret som driften af systemets model. Det kan bruges til at udforske og få ny indsigt i ny teknologi og til at vurdere ydeevnen af systemer, der er for komplekse til analytiske løsninger.[1]
Referencer
Yderligere læsning
- Young, Joseph and Findley, Michael. 2014. "Computational Modeling to Study Conflicts and Terrorism." Routledge Handbook of Research Methods in Military Studies edited by Soeters, Joseph; Shields, Patricia and Rietjens, Sebastiaan. pp. 249–260. New York: Routledge,
- R. Frigg and S. Hartmann, Models in Science. Entry in the Stanford Encyclopedia of Philosophy.
- E. Winsberg Simulation in Science. Entry in the Stanford Encyclopedia of Philosophy.
- S. Hartmann, The World as a Process: Simulations in the Natural and Social Sciences, in: R. Hegselmann et al. (eds.), Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, Theory and Decision Library. Dordrecht: Kluwer 1996, 77–100.
Eksterne henvisninger
Medier brugt på denne side
Forfatter/Opretter:
- Typhoon_Mawar_2005_computer_simulation.gif: Atmoz
- derivative work: Atmoz (talk)
A 48 hour simulation of Typhoon Mawar using the Weather Research and Forecasting model. At this time, Mawar was at approximately 24N 140E and moving slowly to the north. Initial conditions and boundary conditions are from the 1 degree FNL reanalysis (approximately 110 kilometers, 68 miles). The simulation runs from 22 August 2005 00:00 Zulu to 24 August 2005 00:00 Zulu. The model has 3.3 kilometre (2.1 mile) grid point spacing, and utilizes vortex following which is why the typhoon remains in the middle of the frame. Approximately the first 24 hours (frames) show the model "spinning up"— which is the amount of time needed for the model physics to reach equilibrium with the applied boundary conditions. After the initial round of convection in the first couple frames, gravity waves can be seen propagating outward from the center of convection, especially in the northwest quadrant of the storm system. The final 24 hours (frames) represent a high resolution simulation of the actual typhoon. The reds and oranges represent high rainfall rates, blues and greens light rainfall, and the white are regions of no rainfall.
Forfatter/Opretter: Danski14, Licens: CC BY-SA 3.0
Flowchart showing the relationship between experiment, simulation and theory. Ideas adopted from Allen and Tildesly, "Computer Simulation of Liquids" . SVG created using the DIA open source diagram editor for linux.