Buck-konverter

En buck-konverter eller step-down-konverter er en smps med en numerisk output-spænding mindre end dens numeriske input-spænding og input og output har ens fortegn. Boost-konvertere er en klasse af switching-mode power supply (SMPS) indeholdende i sin simpleste form en kommutationscelle; en aktiv kontakt (f.eks. en transistor) og en passiv kontakt (f.eks. en diode) og en spole som energilager. Herudover har buck-konverteren sædvanligvis brug for filtrering udgjort af kondensatorer (mange gange i kombination med spoler) for at mindske output-fluktuationer og især input-fluktuationer (ripple) og EMI.

Figur 1: Buck-konverter diagram.

Den simpleste måde at reducere en DC-spænding er ved at anvende et spændingsdelerkredsløb, men spændingsdelere spilder energi, da de virker ved at "brænde" overflødig energi af som varme; herudover er spændingen ikke reguleret (varierer f.eks. med input-spændingen). I modsætning hertil kan en buck-konverter være temmelig effektiv (let op til 95% for integrerede kredsløb) og selvregulerende, hvilket gør dem anvendelige til opgaver såsom at konvertere en typisk batterispænding på 12-24V i en bærbar computer ned til nogle få volt som mikroprocessoren behøver.

Driftsprincip

Figur 1: Buck-konverter diagram. Nomenklatur.

Det grundlæggende princip, som får buck-konverteren til at virke, er spolens selvinduktion – og herudover den rette timing og miljø.

Når spolen lagrer energi opfører den sig som en belastning og absorberer energi, som lagres i magnetfeltet – og når den afgiver energi, opfører den sig som en energikilde. Spændingen den opretholder under afladningsfasen er præcis så stor, at spolens strøm (relateret til magnetfeltet) opretholdes, og output-spændingen er under normal drift numerisk mindre, men med samme fortegn, men herudover uafhængig af input-spændingen.

Vedvarende/kontinuert strømdrift (CCM)

Figur 2: En buck-konverters to driftstilstande, når drevet i kontinuert strømdrift (CCM). Hvis diskontinuert strømdrift DCM vælges haves en tredje tilstand.
Figur 3: En buck-konverters strøm og spændingsgrafer der drives i kontinuert strømdrift (CCM).

Når en buck-konverter drives i kontinuert strømdrift (CCM), falder strømmen gennem spolen () ikke til nul. Den anvendte nomenklatur er som i figur 1.

Yderligere antagelser i dette afsnit:

  • komponenterne har ideel opførsel
  • konverteren arbejder i ligevægt
  • er konstant
  • Output-spændingen er numerisk mindre end input-spændingen (belastningen er passende høj resistans og kondensatoren passende høj kapacitans)
  • er konstant, hvilket betyder at kondensatorens kapacitans nødvendigvis er uendelig
  • har samme fortegn som . Med den viste dioderetning er begge positive.

Figur 3 viser de typiske strøm og spændingsgrafer i en konverter med CCM-drift. En buck-konverters driftstilstande under CCM (se figur 2) er:

  • i transistor on-tilstanden (diode off), er S ledende (se figur 1), hvilket resulterer i en stigende spolestrøm over tidsinterval [0;D*T[.
  • i transistor off-tilstanden (diode on), er S ikke-ledende og så længe den er det (og der er energi lagret i spolens magnetfelt), vil dioden lede spolens genererede strøm til kondensatoren C og belastningen R. Dette sker over tidsinterval [D*T;T[

Under de tidligere nævnte antagelser kan output-spændingens ligning udledes. Dette gøres i det følgende.

Når S er ledende; on (transistoren er on), vil input-spændingen () være påtrykt spolen, hvilket resulterer i en linear stigende strøm () løber gennem spolen som funktion af (t), som kan beregnes ved følgende formel:

Ved slutningen af S on-perioden, vil stigningen af IL derfor være:

D er arbejdscyklus (en. duty cycle). D repræsenterer brøkdelen, at S er on i forhold til den totale S on plus S off tid (S on plus S off er her kommutationscyklens tid). Derfor vil D være mellem 0 (S er aldrig on) og 1 (S er altid on).

Når S er off, sender spolen en faldende strøm over tid gennem kondensator og belastning. Under de tidligere antagelser, vil udviklingen af IL være lineart faldende:

I så fald vil det lineare IL fald under S off-perioden være:

Da vi antager at konverteren drives under ligevægtsbetingelser, bliver energimængden gemt i hver af dets komponenter nødt til at være den samme ved begyndelsen og slutningen af kommutationscyklen. I spolen vil den være givet ved:

Derfor vil spolestrømmen, under de givne antagelser, være den samme ved begyndelsen og slutningen af kommutationscyklen. Dette kan skrives som

Ved at erstatte og med deres udtryk giver:

Dette kan skrives som:

Hvilket viser at arbejdscyklus er:

Hvis antagelserne holder, vil output-spændingen stige med D, når arbejdscyklus går fra 0 til 1) – og mod input-spændingen, når D går mod 1. Da D er mindre end eller lig 1, vil output-spændingen numerisk være mindre eller lig input-spændingen. Dette er årsagen til at denne konvertertype også benævnes step-down-konverter.

Diskontinuert strømdrift (DCM)

Figur 4: En buck-konverters strøm og spændingsgrafer der drives under diskontinuert strømdrift (DCM). I en nederste graf er rød og blå.

Man kan vælge at spolestrømmen skal falde til nul i en del af kommutationscyklen. Den eneste forskel fra CCM-drift er at spolen er tømt for energi i en kort tid (se figur 4). Nomenklatur som i figur 1.

Yderligere antagelser i dette afsnit:

  • komponenterne har ideel opførsel
  • konverteren arbejder i ligevægt
  • er konstant
  • Output-spændingen er numerisk mindre end input-spændingen (belastningen er passende høj resistans og kondensatoren passende høj kapacitans)
  • er konstant, hvilket betyder at kondensatorens kapacitans nødvendigvis er uendelig
  • har samme fortegn som . Med den viste dioderetning er begge positive.

En buck-konverters driftstilstande under diskontinuert strømdrift (DCM) (se figur 2) er:

  • i transistor on-tilstanden (diode off), er S ledende (se figur 1), hvilket resulterer i en stigende spolestrøm over tidsinterval [0;D*T[.
  • i transistor off-tilstanden (diode on), er S ikke-ledende og så længe der er energi lagret i spolens magnetfelt, vil dioden lede spolens genererede strøm til kondensatoren og belastningen R. Dette sker over tidsinterval [D*T;(D+δ)*T[
  • i transistor off-tilstanden (diode off), er S ikke-ledende og der er ingen energi lagret i spolens magnetfelt, så dioden er også ikke-ledende. Dette sker over tidsinterval [(D+δ)*T;T[

Det har en effekt på output-spændingens ligning. Den udledes i det følgende.

Da, spolestrømmen ved begyndelsen af kommutationscyklen er nul, vil dens maksimumsværdi (ved ) være

transistor off-tilstanden (diode on), IL falder til nul efter :

Ved at anvende de to foregående ligninger er δ:

Belastningsstrømmen Io er lig diodens middelstrøm (ID). Som det kan ses på figur 4, er diodestrømmen lig spolestrømmen mens S er off. Derfor kan output-strømmen skrives som:

Ved at udskifte ILmax og δ med deres respektive udtryk fås:

Og ved substitution af δ med udtrykket ovenfor fås:

Derfor kan output-spændings-forstærkningsfaktoren skrives som følger:

Sammenlignet med udtrykket af output-spændingen for CCM-drift, er dette udtryk mere kompliceret. Ydermere vil output-spændings-forstærkningsfaktoren ikke kun afhænge af arbejdscyklus, men også af spolens induktans, input-spændingen, (T) og output-strømmen.

Kilder/referencer

  • 3. P. Julián, A. Oliva, P. Mandolesi, and H. Chiacchiarini, “Output discrete feedback control of a DC-DC Buck converter,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE’97), Guimaraes, Portugal, 7-11Julio 1997, pp. 925–930.
  • 4. H. Chiacchiarini, P. Mandolesi, A. Oliva, and P. Julián, “Nonlinear analog controller for a buck converter: Theory and experimental results”, Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE’99), Bled, Slovenia, 12 – 16 July 1999, pp. 601–606.
  • 5. M. B. D’Amico, A. Oliva, E. E. Paolini y N. Guerin, “Bifurcation control of a buck converter in discontinuous conduction mode”, Proceedings of the 1st IFAC Conference on Analysis and Control of Chaotic Systems (CHAOS’06), pp. 399-404, Reims (Francia), 28 al 30 de junio de 2006.
  • 6. Oliva, A.R., H. Chiacchiarini y G. Bortolotto “Developing of a state feedback controller for the synchronous buck converter”, Latin American Applied Research, Volumen 35, Nro 2, Abril 2005, pp. 83-88. ISSN 0327-0793.
  • 7. D’Amico, M. B., Guerin, N., Oliva, A.R., Paolini, E.E. Dinámica de un convertidor buck con controlador PI digital. Revista Iberoamericana de automática e informática industrial (RIAI), Vol 4, No 3, julio 2007, pp. 126-131. ISSN 1697-7912.

Se også

Eksterne henvisninger

Many Java applets demonstrating the operation of converters are available on the Interactive Power Electronics Seminar (iPES) Arkiveret 26. oktober 2001 hos Wayback Machine

Medier brugt på denne side

Buck conventions.svg
Forfatter/Opretter: No machine-readable author provided. CyrilB~commonswiki assumed (based on copyright claims)., Licens: CC BY-SA 3.0

Cyril BUTTAY

Naming conventions for the components, current and voltage in a buck converter
Buck operating.svg
Forfatter/Opretter: No machine-readable author provided. CyrilB~commonswiki assumed (based on copyright claims)., Licens: CC BY-SA 3.0
Cyril BUTTAY - the two operating modes of a buck converter
Buck chronogram discontinuous.png
Forfatter/Opretter: No machine-readable author provided. CyrilB~commonswiki assumed (based on copyright claims)., Licens: CC BY-SA 3.0
Диаграмма работы обратноходового преобразователя
Buck chronogram.png
Forfatter/Opretter: , Licens: CC BY-SA 3.0
Диаграмма работы обратноходового преобразователя без прерывания тока дросселя