Algebra

Broom icon.svgDer er ingen kildehenvisninger i denne artikel, hvilket er et problem.
Du kan hjælpe ved at angive kilder til de påstande, der fremføres. Hvis ikke der tilføjes kilder, vil artiklen muligvis blive slettet.
Question book-4.svg
Algebra i praktisk anvendelse

Algebra (ar. "al-jabr") er en gren af matematikken der kan beskrives som en generalisering og udvidelse af aritmetikken. Ved algebra forstås også "bogstavregning" og "læren om matematiske operationer".

Oprindelse

Ordet algebra kommer af titlen på et afgørende værk om algebra skrevet af den persiske matematiker Al-Khwārizmī i 820 – værkets fulde titel var Al-Kitāb al-mukhtaṣar fi l-hisāb al-jabr wa’l-muqābalah (الكتاب المختصر في حساب الجبر والمقابلة), der betyder "Den grundige bog om udregning ved sammensætning og afbalancering". Bogen blev i middelalderen oversat til latin med titlen Liber algebrae et almucabala. Heri opsummerede og udvidede Al-Khwārizmī samtidens viden om algebraiske ligninger, idet han i særlig grad hentede inspiration hos den indiske matematiker Brahmagupta og den græske matematiker Diofant.

Opdeling

Man kan lave en grov inddeling af algebra i disse felter:

  • Elementær algebra hvor man ser på egenskaberne ved de reelle tal, hvor man regner symbolsk med bogstaver som repræsenterer tal, og hvor reglerne omkring matematiske udtryk og ligninger studeres.
  • Abstrakt algebra hvor man ser på strukturer som legemer, grupper og ringe.
  • Universel algebra hvor man ser på egenskaber der er fælles for alle algebraiske strukturer.
  • Computeralgebra hvor man ser på algoritmer til symbolsk manipulation af matematiske elementer.

Den klassiske algebra beskæftigede sig særligt med løsningen af ligninger af 'te grad. Algebraens fundamentalsætning udsiger, at når blot man anvender komplekse tal, har enhver sådan ligning (i én variabel) altid løsninger (der dog ikke nødvendigvis er forskellige).

Se også

Medier brugt på denne side

Binomio al cubo.svg
Graphical representation of the mathematical identity that .